Geospatial analysis of forest cover change: 10th August 2022 Main Findings and Next Steps

THE UNIVERSITY of EDINBURGH

sam.bowers@ed.ac.uk casey.ryan@ed.ac.uk

REDD+ requires new data on forests

- How much forest is there in Jamaica?
- What types of forest?
- How much carbon is stored in Jamaica's forests?
- How are Jamaica's forests changing?
 - Deforestation
 - Regrowth
- What are the associated CO₂ emissions/removals?

Contents

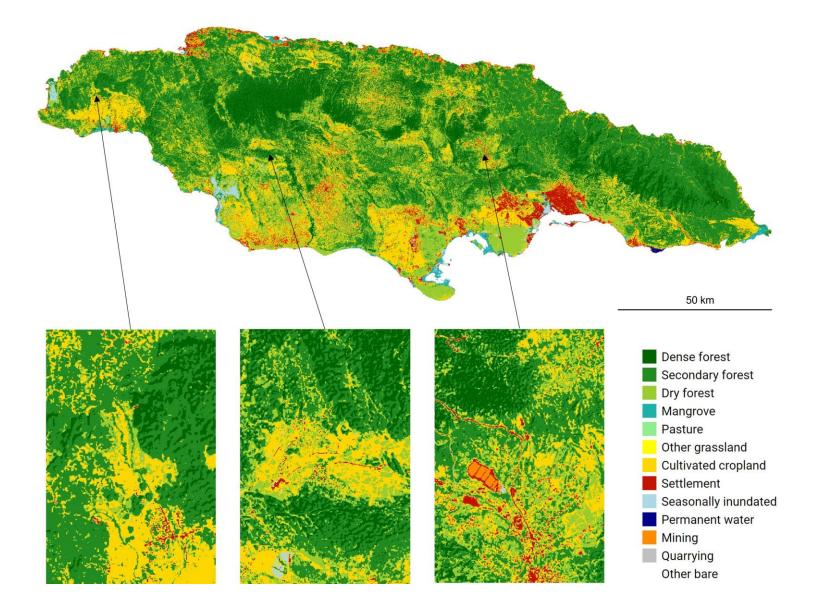
Part 1: The state of Jamaica's forests

Part 2: The NFMS and FREL

Part 3: What comes next?

Part 1: The state of Jamaica's forests

- REDD+ readiness (phase 1) has introduced new methods for monitoring Jamaica's forest cover
- These have improved understanding of how and where Jamaica's forests are changing

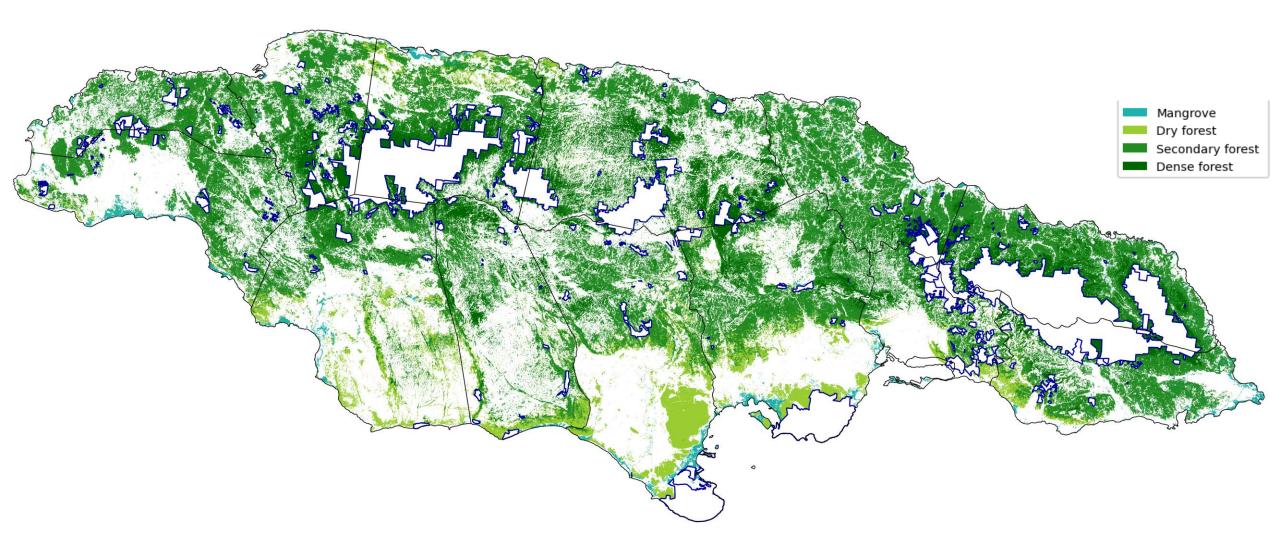


Land cover time series: methods summary

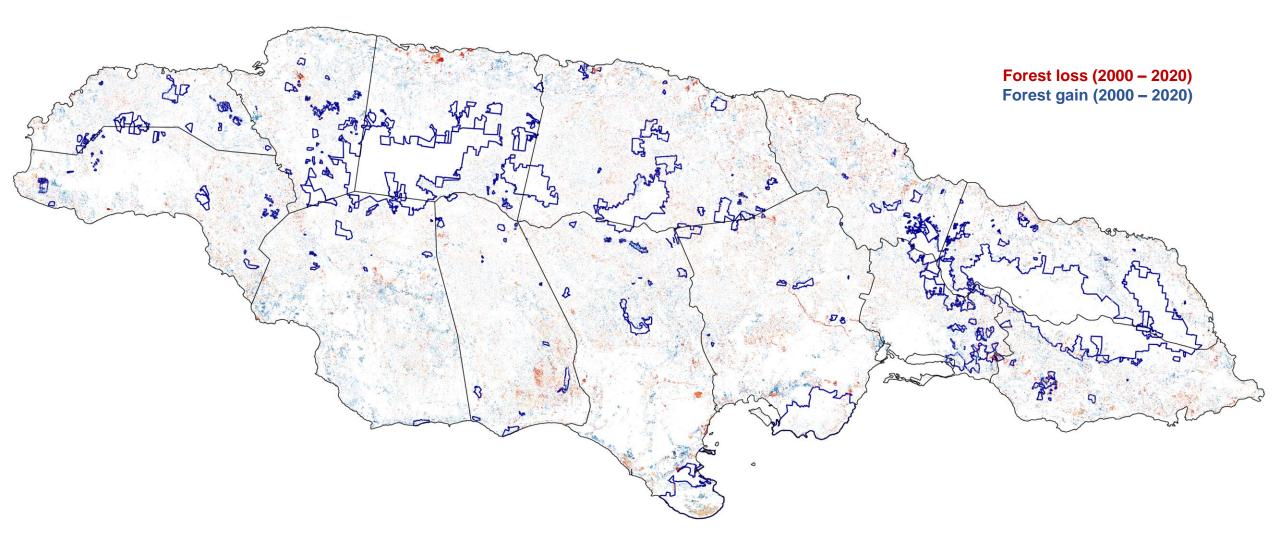
- Annual maps using Landsat data
 - Unrivalled time series (1984 – present)
 - 30 m pixel resolution
 - Free data
- Annual land cover estimates
- Provides a historical baseline on rates of change and their locations to support a REDD+ strategy.

Data available now:

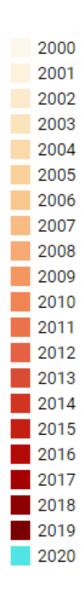
https://sambowers.users.earthengine.app/view/jamaicachangev1 https://sambowers.users.earthengine.app/view/jamaicalandcoverv1


Observation 1: Jamaica is heavily forested

Most tree cover is outside of FD managed lands, and the majority privately owned. 'Secondary forests' are dominant

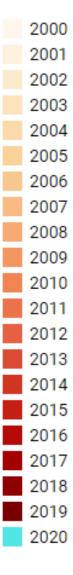

Observation 1: Jamaica is heavily forested

Most tree cover is outside of FD managed lands, and the majority privately owned.

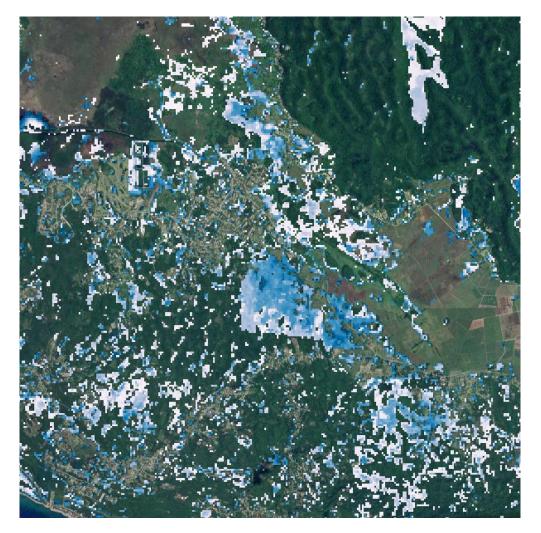

Observation 1: Jamaica is heavily forested


The main changes in tree cover are occurring outside of FD managed land.

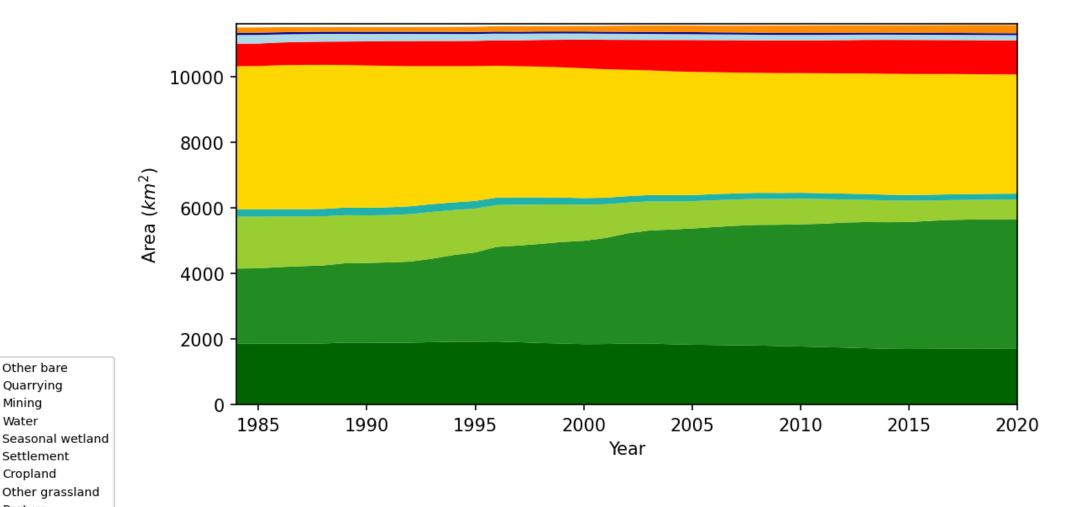
Settlement expansion. Mainly coastal


Settlement expansion. Mainly coastal

Infrastructure development



t expansion. Mainly coastal	
structure development	
Bauxite mining and quarrying	


pansion. Mainly coastai	
cture development	2000
	2001
ixite mining and quarrying	2002
Natural disturbances: fire and hurricanes	2003
	2004
	2005
	2006
	2007
	2008
	2009
	2010
	2011
	2012
	2013
	2014
	2015
	2016
	2017
	2018
	2019
	2020

Agriculture (gains)

Observation 3: Net tree cover is likely increasing

- Total forest area has been stable/increasing over the past four decades. •
- Large increase in secondary forest area. ٠

Other bare Quarrying Minina

Settlement Cropland

Vater

Pasture

Mangrove Dry forest

Secondary forest

Dense forest

This is not the final word

REDD+ is an ongoing process, and new monitoring systems will be developed and formalised over time

You can expect new data and new opportunities to enhance the strategy.

New data will have multiple applications

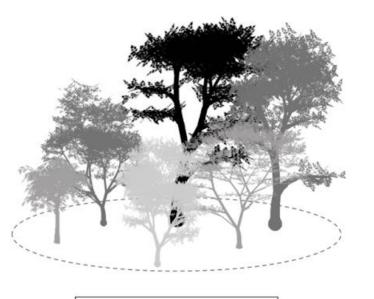
- Sustainable forest management
- Jamaica's NDCs
- Spatial planning

Part 2: The NFMS and FREL

 The Warsaw Framework requires a 'National Forest Monitoring System' (NFMS) and a 'Forest Reference Emissions Level' (FREL)

- A National Forest Monitoring System (NFMS) is used for recording and monitoring how land is used in a country, and quantify greenhouse gas emissions.
- Implemented in three phases:
 - Phase 1: Gathering initial data, developing capacity, institutions and infrastructure
 - Phase 2: Piloting NFMS with REDD+ demonstration activities
 - Phase 3: Full implementation
- Fulfils the purpose of Measuring, Reporting and Verification (MRV)
 - Changes in extent, quality, or type of forest land, usually using satellite data
 - Forest carbon stocks, usually from a national forest inventory

Satellite land monitoring system



ACTIVITY DATA

Х

Area of forest changes derived from satellite data time series

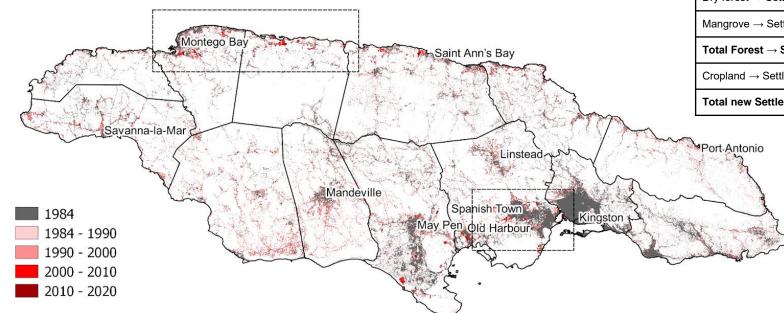
National Forest Inventory

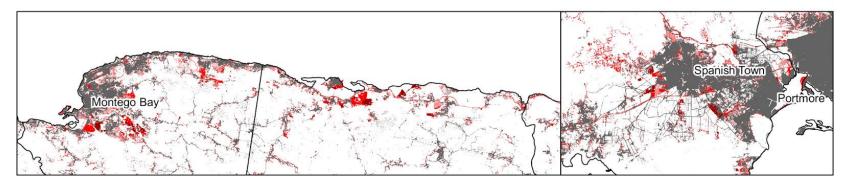
EMISSION FACTORS

Forest carbon density derived from forest plot measurements

Greenhouse Gas Emissions

Previous land use	Current land use	Area (ha)	∆AGB (t/ha)	Emissions (tCO2)
Dry forest	Cropland	700	90	115500
Dry forest	Other land	350	90	57750
Moist forest	Cropland	14700	240	6468000
Moist forest	Grassland	2450	230	1033083
Moist forest	Other land	1400	240	616000
Plantation	Other land	350	290	186083
			Total	8476417

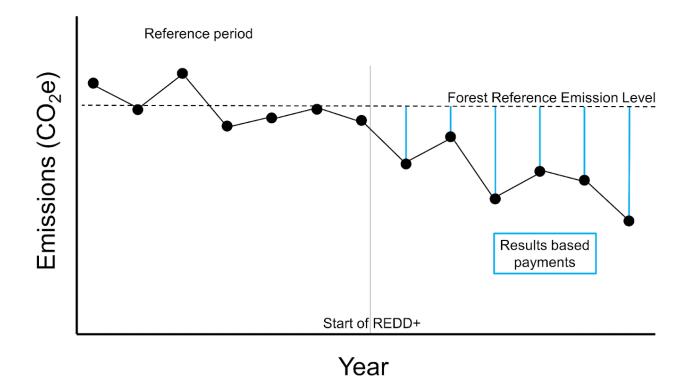

=


EMISSIONS ESTIMATE

An estimate of greenhouse gas emissions/sinks associated with forestry

An example: urban development in Jamaica

Land conversion	Area 2011 - 2021 (ha/yr)	Forest carbon loss (tonnes/yr)	Emissions (tonnes CO2/yr)
Dense forest \rightarrow Settlement	5	1,500	2,585
Secondary forest \rightarrow Settlement	139	10,703	18,445
Dry forest \rightarrow Settlement	81	9,720	16,751
Mangrove \rightarrow Settlement	37	7,104	12,243
Total Forest → Settlement	262	29,027	50,023
$Cropland \rightarrow Settlement$	687	-	-
Total new Settlement	949	-	-



Forest Reference Emissions Level

- 12/0.12
 National Strategy (NS) or Action Plan (AP)
 National Forest Monitoring System (NFM)
 Vational Forest Monitoring System

 12/0.12
 Safeguard Information System (SIS)
 Forest Reference Femission Level (FRL)
 Image: Safeguard Forest Reference (FRL)
- The Forest Reference Emissions Level (FREL) is a benchmark against which to assess performance of REDD+ activities.

• Once constructed, the proposed FREL can be submitted to UNFCCC. The FREL is subject to technical assessment, and may be revised by the country.

Progress towards a NFMS for Jamaica

Satellite Land Monitoring System	1. A series of remote training workshops have been conducted with geospatial staff in the		
	Forestry Department to familiarize technical staff with the data requirements for a NFMS.		
	2. The Forestry Department now has access to a historical time series of forest cover and		
	change at annual time steps. This has been used to identify the activities associated with		
	forest cover change, including both losses and gains.		
	3. Methods have been reviewed to produce emissions estimates that are consistent with		
	current best practice for REDD+. The methods eventually used in the NFMS will depend on		
	the chosen REDD+ strategy.		
National Forest Inventory	1. Jamaica is currently designing its NFI, and this plan has been reviewed for consistency with		
	the requirements of a NFMS. Broadly it is expected that these data will be suitable for the		
	NFMS, although the 5-year time horizon for completion of the NFI will require use of default		
	emission factors until the NFI is complete.		
	2. Training has been conducted with field staff on the data requirements of an NFMS,		
	including methods for production of emission factors.		

MRV Training

			•	Module 1. I understand the utility of cloud processing platforms for remote sensing		
,			·•	Module 1. I know how to access cloud platforms for remote sensing data processing		
			·•	Module 1. I plan to use cloud platforms (e.g. Google Earth Engine) in my work in future		
,				Module 2. I know how to make a land cover map		
			·•	Module 2. I understand how remote sensing data is used as part of REDD+ MRV processes		
,			·•	Module 2. I know how to interpret the land cover time series produced for the REDD+ strategy.		
,			·	Module 3. I understand what a Forest Reference Emission Level (FREL) is and its importance for REDD+		
,			·•	Module 3. I know where to find other countries' FREL submissions		
				Module 3. I feel ready to construct a FREL for Jamaica		
			·•	Module 4. I know what a National Forest Monitoring System (NFMS) is and its importance for REDD+		
			·•	Module 4. I understand the considerations and trade-offs in design of a National Forest Monitoring System (NFMS)		
			·•	Module 4. I understand what Activity Data are, and how they can be produced		
,			·•	Module 4. I understand what Emission Factors are, and how they can be produced		
			• · · · · · · · · · · · · · · · · · · ·	Module 4. I feel ready to design a National Forest Monitoring System for Jamaica		
1	2	3	4 5	Module 5. I know where to look for technical assistance and good practice guidance for REDD+ MRV		
	Score (1 = strongly disagree, 5 = strongly agree)					

rms ion to cloud platforms for EO data processing ion to Google Earth Engine					
ion to cloud platforms for EO data processing					
ion to Google Earth Engine					
ũ ũ					
ion to Google Earth Engine continued					
orest Change data in Google Earth Engine					
cepts					
er mapping in Google Earth Engine					
Training data collection Catch-up					
Training data collection continued Catch-up					
for time series mapping					
ssion					
sion Levels					
ion to REDD+					
ata: pixel counting					
ata: systematic sampling					
Collect Earth					
ata: stratified sampling					
ata: Stratified area estimation					
of drivers of deforestation in Jamaica					
Other countries FREL submissions					
Adule 4. National Forest Monitoring Systems					
roadmap for Jamaica					
OLD World Bank training module: Estimating factors for forest cover change					
OLD World Bank training module: Estimation of missions					
OLD World Bank training module: Estimation of tities					

NFI Training

Day	Description
Day 1 am	Introduction to REDD+ National Forest Monitoring Systems Emission factors and activity data Forest Reference Emission Levels Jamaica's REDD+ strategy Estimating emission factors:
	 What is the purpose of a National Forest Inventory (NFI)? How can an NFI inform REDD+? Plot inventory methods Allometric models Uncertainty
	Practical: Estimating emission factors using forest inventory data analysis in Excel
Day 1 pm	Counting carbon 1 • What is activity data, and how is it estimated?
	Practical: Review of historical forest change data in Jamaica
Day 2 am	Counting carbon 2 • How are emissions estimated for REDD+? • What data will Jamaica need? • How will Jamaica generate a FREL?
	Practical: Emissions estimation methods in Excel
Day 2 pm	 Practical: Open session, Select from: Emissions estimation methods in Excel continued Review some real emissions estimates, including methods for estimating uncertainties Introduction to programming in R
	REDD+: The international context • Who funds REDD+?
	Quiz: Assessment of learning.

10th – 11th November 2021, Terra Nova Hotel

Part 3: What comes next?

Two central goals:

- 1) Operationalisation of the NFMS
- 2) Submission of the FREL

Operationalising the NFMS and FREL

Requirements:

- Research and development
- Training and learning
- Dedicated staff time
- Field testing

Funding

Outcomes:

- Finalised methods for forest monitoring
- Standard Operating Procedures
- A proposed FREL for Jamaica

Anticipated challenges:

• What is the scope of REDD+?

Deforestation, degradation, conservation, sustainable forest management, enhancement

• What is a forest?

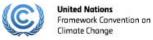
Is 70% canopy cover a workable forest definition?

• Idle agricultural land – forest or not? Is Jamaica's forest cover really increasing?

Is Jamaica's lorest cover really increasing?

- Complex land tenure Forest changes are concentrated on private land
- Demonstrating additionality

How can it be determined whether actions are adding to forest protection in Jamaica?

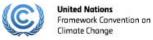

Consistency with other programs


Nationally determined contributions, FAO FRA, Forest reserve management

N.B These decisions are as much strategic as technical

Submitting the FREL

https://redd.unfccc.int/fact-sheets/forest-reference-emission-levels.html




Countries that submitted a proposed forest reference emission level and/or forest reference level

Argentina	Dominican Republic	Lao People's Democratic Republic	Papua New Guinea
Bangladesh	Ecuador	Liberia	Paraguay
Belize	El Salvador	Madagascar	Peru
Bhutan	Equatorial Guinea	Malawi	Saint Lucia
Brazil	Ethiopia	Malaysia	Solomon Islands
Burkina Faso	Gabon	Mexico	Sri Lanka
Cambodia	Ghana	Mongolia	Sudan
Chile	Guatemala	Mozambique	Suriname
Colombia	Guinea-Bissau	Myanmar	Thailand
Congo	Guyana	Nepal	Тодо
Costa Rica	Honduras	Nicaragua	Uganda
Côte d'Ivoire	India	Nigeria	United Republic of Tanzania
Democratic Republic of the Congo	Indonesia	Pakistan	Viet Nam
Dominica	Kenya	Panama	Zambia

Submitting the FREL

https://redd.unfccc.int/fact-sheets/forest-reference-emission-levels.html

Countries that submitted a proposed forest reference emission level and/or forest reference level

Argentina	Dominican Republic	Lao People's Democratic Republic	Papua New Guinea
Bangladesh	Ecuador	Liberia	Paraguay
Belize	El Salvador	Madagascar	Peru
Bhutan	Equatorial Guinea	Malawi	Saint Lucia
Brazil	Ethiopia	Malavsia	Solomon Islands
Burkina Faso	Gabon	Mexico	Sri Lanka
Cambodia	Ghana	Mongolia	Sudan
Chile	Guatemala	Mozambique	Suriname
Colombia	Guinea-Rissau	Myanmar	Thailand
Congo	Guyana	Nepal	Тодо
Costa Rica	Honduras	Nicaragua	Uganda
Côte d'Ivoire	India	Nigeria	United Republic of Tanzania
Democratic Republic of the Congo	Indonesia	Pakistan	Viet Nam
Dominica	Kenya	Panama	Zambia

Geospatial analysis of forest cover change: 10th August 2022 Main Findings and Next Steps

THE UNIVERSITY of EDINBURGH

sam.bowers@ed.ac.uk casey.ryan@ed.ac.uk